Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 57(2): 208-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050666

RESUMO

AIM: Guanylate-binding protein 5 (GBP5) is an interferon (IFN)-inducible GTPase that plays a crucial role in the cell-autonomous immune response against microbial infections. In this study, we investigated the immunoregulatory role of GBP5 in the pathogenesis of dental pulpitis. METHODOLOGY: Gene-set enrichment analysis (GSEA) was utilized to evaluate the IFN-γ signalling pathway, and the differential expression of GBP mRNA in normal versus inflamed dental pulp tissues was screened, based on Gene Expression Omnibus (GEO) datasets associated with pulpitis. Both normal pulp tissues and inflamed pulp tissues were used for experiments. The expression of IFNs and GBPs was determined by qRT-PCR. Immunoblotting and double immunofluorescence were performed to examine the cellular localization of GBP5 in dental pulp tissues. For the functional studies, IFN-γ priming or lentivirus vector-delivered shRNA was used to, respectively, overexpress or knock down endogenous GBP5 expression in human dental pulp stem cells (HDPSCs). Subsequently, LPS was used to stimulate HDPSCs (overexpressing or with knocked-down GBP5) to establish an in vitro model of inflammation. qRT-PCR and ELISA were employed to examine the expression of proinflammatory cytokines (IL-6, IL-8 and IL-1ß) and cyclooxygenase 2 (COX2). Every experiment has three times of biological replicates and three technical replicates, respectively. Statistical analysis was performed using the Student's t-test and one-way ANOVA, and a p-value of <.05 was considered statistically significant. RESULTS: GSEA analysis based on the GEO dataset revealed a significant activation of the IFN-γ signalling pathway in the human pulpitis group. Among the human GBPs evaluated, GBP5 was selectively upregulated in inflamed dental pulp tissues and predominantly expressed in dental pulp cells. In vitro experiments demonstrated that IFN-γ robustly induced the expression of GBP5 in HDPSCs. Knockdown of GBP5 expression in HDPSCs significantly amplified the LPS-induced upregulation of inflammatory mediators (IL-6, IL-8, IL-1ß and COX2) both with and without IFN-γ priming. CONCLUSION: Our findings demonstrated that GBP5 partook in the pathogenesis of dental pulpitis. The involvement of GBP5 in pulpitis appeared to coordinate the regulation of inflammatory cytokines. Knockdown of GBP5 contributed to the exacerbation of LPS-mediated inflammation.


Assuntos
Pulpite , Humanos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Polpa Dentária , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulpite/metabolismo
2.
Int Endod J ; 57(1): 37-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874659

RESUMO

AIM: Dental pulp is richly innervated by nerve fibres, which are mainly involved in the sensation of pain. Aside from pain sensation, little is known regarding the role of dental innervation in reparative dentine formation. We herein generated a mouse model of experimental dentine injury to examine nerve sprouting within the odontoblast and subodontoblastic layers and investigated the potential effects of this innervation in reparative dentinogenesis. METHODOLOGY: Mouse tooth cavity model (bur preparation + etching) was established, and then nerve sprouting, angiogenesis and reparative dentinogenesis were determined by histological and immunofluorescent staining at 1, 3, 7, 14 and 28 days postoperatively. We also established the mouse-denervated molar models to determine the role of sensory and sympathetic nerves in reparative dentinogenesis, respectively. Finally, we applied calcitonin gene-related peptide (CGRP) receptor antagonist to analyse the changes in angiogenesis and reparative dentinogenesis. RESULTS: Sequential histological results from dentine-exposed teeth revealed a significant increase in innervation directly beneath the injured area on the first day after dentine exposure, followed by vascularisation and reparative dentine production at 3 and 7 days, respectively. Intriguingly, abundant type H vessels (CD31+ Endomucin+ ) were present in the innervated area, and their formation precedes the onset of reparative dentine formation. Additionally, we found that sensory denervation led to blunted angiogenesis and impaired dentinogenesis, while sympathetic denervation did not affect dentinogenesis. Moreover, a marked increase in the density of CGRP+ nerve fibres was seen on day 3, which was reduced but remained elevated over the baseline level on day 14, whereas the density of substance P-positive nerve fibres did not change significantly. CGRP receptor antagonist-treated mice showed similar results as those with sensory denervation, including impairments in type H angiogenesis, which confirms the importance of CGRP in the formation of type H vessels. CONCLUSIONS: Dental pulp sensory nerves act as an essential upstream mediator to promote angiogenesis, including the formation of type H vessels, and reparative dentinogenesis. CGRP signalling governs the nerve-vessel-reparative dentine network, which is mostly produced by newly dense sensory nerve fibres within the dental pulp.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Dentina Secundária , Camundongos , Animais , Polpa Dentária/inervação , 60489 , Dor
3.
J Endod ; 49(4): 402-409, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758674

RESUMO

INTRODUCTION: Pulp calcification (PC) often appears in strong association with nerve fiber bundles, which indicates the important role of dental nerves in the formation of PC. Additionally, given that sensory nerves and calcitonin gene-related peptide (CGRP) secreted from sensory nerve fibers are involved in physiological and pathological bone formation, we aimed to determine whether chronic irritation of sensory nerves can promote the occurrence of PC. METHODS: A sensory nerve irritation rat model was established via ligation of the inferior alveolar nerve (IAN), and face grooming behavior was analyzed as a measure of pain sensation. Two months post-surgery, PC was determined by imaging and histologic analyses. RESULTS: Rats in the IAN-chronic constriction injury (IAN-CCI) group showed spontaneous pain-associated behavior after the operations and pain tolerance on the 60th postoperative day. The imaging and histological analysis showed more calcified particles in the IAN-innervated first and second molars after day 60 of the dental sensory nerve irritation. These calcified masses had a dentin-like structure that contained sparse, irregularly oriented tubules. Compared to the control and sham groups, the odontoblasts located in the periphery of radicular pulp aligned along a thicker layer of predentin; which expressed more nestin with longer and stouter processes in the IAN-CCI group. Additionally, more CGRP-positive nerves were observed in the IAN-CCI group. CONCLUSIONS: Irritation of sensory nerves promotes PC formation, and the increased density of CGRP-immunolabeled fibers probably contributes to this process. This highlights the significance of dental sensory nerves in the formation of PC.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Polpa Dentária , Ratos , Animais , Polpa Dentária/inervação , Dente Molar , Odontoblastos , Dor
4.
Int Endod J ; 56(2): 245-258, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336782

RESUMO

AIM: Dentinal tubules serve as disease-causing channels for infiltration and penetration of bacteria and their by-products; which are regarded as the major driver of pathogenesis in pulpal inflammation and infection. In this study, we aimed to evaluate the transdentinal potential of nanoscale cetylpyridinium chloride/cholesterol (CPC/Chol) sterosomes, which are a recently developed type of cationic non-phospholipid liposomal nanocarrier; as well as their intrinsic and universal antibacterial activity. METHODOLOGY: Cetylpyridinium chloride/cholesterol sterosomes were formulated, with a hydrodynamic diameter of 134 ± 4 nm, a low polydisperse index of 0.161 ± 0.007, and a positive zeta potential of 41 ± 3 mV at pH 7.4. Transdentinal diffusion ability of sterosomes was evaluated using human dentine blocks in vitro, and Wistar rat molar teeth in vivo. The intrinsic antibacterial activities of CPC/Chol sterosomes against Enterococcus faecalis, Streptococcus mutans, Fusobacterium nucleatum, and Porphyromonas gingivalis were further examined. RESULTS: Cetylpyridinium chloride/cholesterol sterosomes successfully penetrated through the dentinal tubules, and diffused into the pulp, which could be internalized by dental pulp cells with a high efficiency. In addition, they exhibited substantial levels of intrinsic antibacterial activity against these Gram-positive and Gram-negative endodontic bacteria and their biofilms. CONCLUSIONS: Given its high penetration and diffusion ability through the dentine and pulp, great potential for multi-drug delivery, and distinct intrinsic antibacterial activity; sterosome-based nanocarriers might serve as a promising therapeutic strategy aimed at targeting various specific pathways associated with pulpal diseases. This will help determine and characterize the most appropriate prophylactic and therapeutic targets for early intervention in our future dentistry practice.


Assuntos
Cetilpiridínio , Lipossomos , Animais , Ratos , Humanos , Cetilpiridínio/farmacologia , Ratos Wistar , Colesterol , Antibacterianos/farmacologia
5.
Front Immunol ; 13: 967989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353625

RESUMO

Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.


Assuntos
Inflamassomos , Lesões por Radiação , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio
6.
Theranostics ; 11(10): 4759-4769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754026

RESUMO

Recently, necroptosis, as a programmed cell death pathway, has drawn much attention as it has been implicated in multiple pathologies, especially in the field of inflammatory diseases. Pseudokinase mixed lineage kinase domain-like protein (MLKL) serves as a terminal-known obligate effector in the process of necroptosis. To date, the majority of research on MLKL has focused on its role in necroptosis, and the prevailing view has been that the sole function of MLKL is to mediate necroptosis. However, increasing evidence indicates that MLKL can serve as a regulator of many diseases via its non-necroptotic functions. These functions of MLKL shed light on its functional complexity and diversity. In this review, we briefly introduce the current state of knowledge regarding the structure of MLKL, necroptosis signaling, as well as cross-linkages among necroptosis and other regulated cell death pathways, and we particularly highlight recent progress related to newly identified functions and inhibitors of MLKL. These discussions promote a better understanding of the role of MLKL in diseases, which will foster efforts to pharmacologically target this molecule in clinical treatments.


Assuntos
Regulação da Expressão Gênica/fisiologia , Necroptose/fisiologia , Proteínas Quinases/fisiologia , Apoptose/fisiologia , Autofagia/fisiologia , Cardiolipinas/metabolismo , Armadilhas Extracelulares , Humanos , Inflamação/metabolismo , Neoplasias/metabolismo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Piroptose/fisiologia , Morte Celular Regulada/fisiologia
7.
J Endod ; 46(10): 1403-1413, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32682790

RESUMO

Regulated cell death (RCD) is a preferred term inclusive of all modes of cell death regulated by multiple intracellular signal transduction pathways under physiological and pathologic conditions. Although cell death programs ensure correct growth and developmental processes as well as protect the host against microbial pathogens, some necrotic cell death pathways, such as pyroptosis, NETosis, and necroptosis, release intracellular damage-associated molecular patterns and inflammatory cytokines, thereby skewing the milieu toward a proinflammatory state. Pulpitis is 1 of the most prevalent oral inflammatory diseases. In response to different types of pulpal injury, RCD may occur either in a "single" or an "overlapped mixed" form, including apoptosis, pyroptosis, and NETosis, which can indicate the severity of pulpal inflammation. RCD has received increasing attention because of the cross talk among cell death pathways. Hence, understanding the molecular switch nodes mediating cross talk between diverse RCD pathways may provide new insights into mechanisms underlying cell-fate decision in pulpitis. In this review, we outlined the potential roles of RCD in the progression of pulpitis and some switch nodes connecting different RCD pathways. Ultimately, an in-depth understanding of molecular mechanisms underlying RCD could be translated into effective approaches to preserve pulpal vitality and integrity under pathologic conditions.


Assuntos
Pulpite , Morte Celular Regulada , Apoptose , Humanos , Necrose , Piroptose
8.
Nanoscale Res Lett ; 9(1): 658, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593550

RESUMO

In this study, we demonstrate the photovoltaic performance enhancement of a p-n junction silicon solar cell using a transparent-antireflective ITO/oxide film deposited on the spacing of the front-side finger electrodes and with a DC voltage applied on the ITO-electrode. The depletion width of the p-n junction under the ITO-electrode was induced and extended while the absorbed volume and built-in electric field were also increased when the biasing voltage was increased. The photocurrent and conversion efficiency were increased because more photo-carriers are generated in a larger absorbed volume and because the carriers transported and collected more effectively due to higher biasing voltage effects. Compared to a reference solar cell (which was biased at 0 V), a conversion efficiency enhancement of 26.57% (from 12.42% to 15.72%) and short-circuit current density enhancement of 42.43% (from 29.51 to 42.03 mA/cm(2)) were obtained as the proposed MOS-structure solar cell biased at 2.5 V. In addition, the capacitance-volt (C-V) measurement was also used to examine the mechanism of photovoltaic performance enhancement due to the depletion width being enlarged by applying a DC voltage on an ITO-electrode.

9.
Bot Stud ; 55(1): 72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510952

RESUMO

BACKGROUND: Gastrodia flabilabella is a mycoheterotrophic orchid that obtains carbohydrates and nutrients from its symbiotic mycorrhizal fungi. The species is an endemic and vulnerable species enlisted in the "A Preliminary Red List of Taiwanese Vascular Plants" according to the IUCN Red List Categories and Criteria Version 3.1. G. flabilabella dwells the underground of broadleaf and coniferous forest with richness litter. Based on herbarium records, this species is distributed in central Taiwan. Twenty eight microsatellite loci were developed in G. flabilabella and were tested for cross-species amplification in additional taxa of G. confusoides, G. elata, and G. javanica. We estimated the genetic variation that is valuable for conservation management and the development of the molecular identification system for G. elata, a traditional Chinese medicine herb. RESULTS: Microsatellite primer sets were developed from G. flabilabella using the modified AFLP and magnetic bead enrichment method. In total, 257 microsatellite loci were obtained from a magnetic bead enrichment SSR library. Of the 28 microsatellite loci, 16 were polymorphic, in which the number of alleles ranged from 2 to 15, with the observed heterozygosity ranging from 0.02 to 1.00. In total, 15, 13, and 7 of the loci were found to be interspecifically amplifiable to G. confusoides, G. elata, and G. javanica, respectively. CONCLUSIONS: Amplifiable and transferable microsatellite loci are potentially useful for future studies in investigating intraspecific genetic variation, reconstructing phylogeographic patterns among closely related species, and establishing the standard operating system of molecular identification in Gastrodia.

10.
Am J Bot ; 99(6): e251-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22615307

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed for the endemic tree Litsea hypophaea (Lauraceae) in Taiwan to investigate its genetic diversity and population genetic structure and to investigate species delimitation within Litsea. METHODS AND RESULTS: Fifteen new simple sequence repeat markers were developed from L. hypophaea with a magnetic bead enrichment method. Most loci were also amplified from three closely related species, L. coreana, L. lii, and L. acutivena. The number of alleles and observed and expected heterozygosities across loci varied with a range of 1-25, 0.000-1.000, and 0.000-0.956, respectively. CONCLUSIONS: The application of these microsatellite markers of L. hypophaea provides a tool for understanding genetic diversity and population differentiation. In addition, interspecific amplification suggests that these markers will also be useful for species identification of related taxa within Litsea in Taiwan.


Assuntos
Variação Genética , Litsea/genética , Repetições de Microssatélites/genética , Árvores/genética , Primers do DNA/genética , DNA de Plantas/química , DNA de Plantas/genética , Litsea/classificação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Taiwan , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...